CFD Model Validation and Prediction of Mist/Steam Cooling in a 180-Degree Bend Tubes
نویسندگان
چکیده
To achieve higher efficiency target of the advanced turbine systems, the closed-loop steam cooling scheme is employed to cool the airfoil. It is proven from the experimental results at laboratory working conditions that injecting mist into steam can significantly augment the heat transfer in the turbine blades with several fundamental studies. The mist cooling technique has to be tested at gas turbine working conditions before implementation. Realizing the fact that conducting experiment at gas turbine working condition would be expensive and time consuming, the computational simulation is performed to get a preliminary evaluation on the potential success of mist cooling at gas turbine working conditions. The present investigation aims at validating a CFD model against experimental results in a 180-degree tube bend and applying the model to predict the mist/steam cooling performance at gas turbine working conditions. The results show that the CFD model can predict the wall temperature within 8% of experimental steam-only flow and 16% of mist/steam flow condition. Five turbulence models have been employed and their results are compared. Inclusion of radiation into CFD model causes noticeable increase in accuracy of prediction. The reflect Discrete Phase Model (DPM) wall boundary condition predicts better than the wall-film boundary condition. The CFD simulation identifies that mist impingement over outer wall is the cause for maximum mist cooling enhancement at 45 of bend portion. The computed results also reveals the phenomenon of mist secondary flow interaction at bend portion, adding the mist cooling enhancement at the inner wall. The validated CFD simulation predicts that average of 100% mist cooling enhancement can be achieved by injecting 5% mist at elevated GT working condition.
منابع مشابه
Validation of Mist/Steam Cooling CFD model in a Horizontal Tube
Mist cooling concept has been considered for cooling turbine airfoils for many years. This concept has been proven experimentally as an effective method to significantly enhance the cooling effectiveness with several fundamental studies in the laboratory under low pressure and temperature conditions. However, it is not certain the same performance can be harnessed in the real gas turbine enviro...
متن کاملCalibration of CFD Model for Mist/Steam Impinging Jets Cooling
In the heavy-frame advanced turbine systems, steam is used as a coolant for turbine blade cooling. The concept of injecting mist into the impinging jets of steam was experimentally proved as an effective way of significantly enhancing the cooling effectiveness in the laboratory under low pressure and temperature conditions. However, whether mist/steam cooling is applicable under actual gas turb...
متن کاملFlow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend
Bend existence induces changes in the flow pattern, velocity profiles and water surface. In the present study, based on experimental data, first three-dimensional computational fluid dynamic (CFD) model is simulated by using Fluent two-phase (water + air) as the free surface and the volume of fluid method, to predict the two significant variables (velocity and channel bed pressure) in 90º sharp...
متن کاملLaminar Flow Analysis in the Channel Bends
In this paper the laminar flow in the rectangular channel bends is simulated using numerical techniques. The turning angle of the channel bend and the area ratio of the channel cross-section are two important parameters to be examined. For flow simulation, the body fitted 3-D continuity and momentum equations are used and a body fitted general purpose code is developed. The existing results of ...
متن کاملLaminar Flow Analysis in the Channel Bends
In this paper the laminar flow in the rectangular channel bends is simulated using numerical techniques. The turning angle of the channel bend and the area ratio of the channel cross-section are two important parameters to be examined. For flow simulation, the body fitted 3-D continuity and momentum equations are used and a body fitted general purpose code is developed. The existing results of ...
متن کامل